Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Clin Med ; 12(4)2023 Feb 17.
Article in English | MEDLINE | ID: covidwho-2242141

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused significant morbidity and mortality worldwide. There is limited information describing the hospital outcomes of COVID-19 patients in regard to specific body mass index (BMI) categories. METHODS: We utilized the Healthcare Cost and Utilization Project Nationwide Inpatient Sample (NIS) 2020 database to collect information on patients hospitalized for COVID-19 in the United States. Using the International Classification of Diseases, 10th revision, Clinical Modification (ICD-10-CM) coding system, adult patients (≥18 years of age) with a primary hospitalization for COVID-19 were identified. Adjusted analyses were performed to assess for mortality, morbidity, and resource utilization, and compare the outcomes among patients categorized according to BMI. RESULTS: A total of 305,284 patients were included in this study. Of them, 248,490 had underlying obesity, defined as BMI ≥ 30. The oldest patients were observed to have BMI < 19, while youngest patients were in the BMI > 50 category. BMI < 19 category had the highest crude in-hospital mortality rate. However, after adjusted regression, patients with BMI > 50 (adjusted odds ratio (aOR) 1.63, 95% CI 1.48-1.79, p-value < 0.001) had the highest increased odds, at 63%, of in-hospital mortality compared to all other patients in the study. Patients with BMI > 50 also had the highest increased odds of needing invasive mechanical ventilation (IMV) and mortality associated with IMV compared to all other patient, by 37% and 61%, respectively. Obese patients were noted to have shorter average hospital length of stay (LOS), by 1.07 days, compared to non-obese patients, but there was no significant difference in average hospitalization charges. CONCLUSION: Among obese patients primarily hospitalized with COVID-19, those with BMI ≥ 40 had significantly increased rates of all-cause in-hospital mortality, need for IMV, mortality associated with IMV, and septic shock. Overall, obese patients had shorter average hospital LOS, however, did not have significantly higher hospitalization charges.

2.
J Intensive Care Med ; 37(10): 1370-1382, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1968486

ABSTRACT

Introduction: Inhaled pulmonary vasodilators (IPVD) have been previously studied in patients with non-coronavirus disease-19 (COVID-19) related acute respiratory distress syndrome (ARDS). The use of IPVD has been shown to improve the partial pressure of oxygen in arterial blood (PaO2), reduce fraction of inspired oxygen (FiO2) requirements, and ultimately increase PaO2/FiO2 (P/F) ratios in ARDS patients. However, the role of IPVD in COVID-19 ARDS is still unclear. Therefore, we performed this meta-analysis to evaluate the role of IPVD in COVID-19 patients. Methods: Comprehensive literature search of PubMed, Embase, Web of Science and Cochrane Library databases from inception through April 22, 2022 was performed for all published studies that utilized IPVD in COVID-19 ARDS patients. The single arm studies and case series were combined for a 1-arm meta-analysis, and the 2-arm studies were combined for a 2-arm meta-analysis. Primary outcomes for the 1-arm and 2-arm meta-analyzes were change in pre- and post-IPVD P/F ratios and mortality, respectively. Secondary outcomes for the 1-arm meta-analysis were change in pre- and post-IPVD positive end-expiratory pressure (PEEP) and lung compliance, and for the 2-arm meta-analysis the secondary outcomes were need for endotracheal intubation and hospital length of stay (LOS). Results: 13 single arm retrospective studies and 5 case series involving 613 patients were included in the 1-arm meta-analysis. 3 studies involving 640 patients were included in the 2-arm meta-analysis. The pre-IPVD P/F ratios were significantly lower compared to post-IPVD, but there was no significant difference between pre- and post-IPVD PEEP and lung compliance. The mortality rates, need for endotracheal intubation, and hospital LOS were similar between the IPVD and standard therapy groups. Conclusion: Although IPVD may improve oxygenation, our investigation showed no benefits in terms of mortality compared to standard therapy alone. However, randomized controlled trials are warranted to validate our findings.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Oxygen , Respiratory Distress Syndrome/drug therapy , Retrospective Studies , Vasodilator Agents/therapeutic use
3.
J Med Virol ; 94(9): 4125-4137, 2022 09.
Article in English | MEDLINE | ID: covidwho-1826051

ABSTRACT

Systemic steroids are associated with reduced mortality in hypoxic patients with coronavirus disease 2019 (COVID-19). However, there is no consensus on the doses of steroid therapy in these patients. Several studies showed that pulse dose steroids (PDS) could reduce the progression of COVID-19 pneumonia. However, data regarding the role of PDS in COVID-19 is still unclear. Therefore, we performed this meta-analysis to evaluate the role of PDS in COVID-19 patients compared to nonpulse steroids (NPDS). Comprehensive literature search of PubMed, Embase, Cochrane Library, and Web of Science databases from inception through February 10, 2022 was performed for all published studies comparing PDS to NPDS therapy to manage hypoxic patients with COVID-19. Primary outcome was mortality. Secondary outcomes were the need for endotracheal intubation, hospital length of stay (LOS), and adverse events in the form of superimposed infections. A total of 10 observational studies involving 3065 patients (1289 patients received PDS and 1776 received NPDS) were included. The mortality rate was similar between PDS and NPDS groups (risk ratio [RR]: 1.23, 95% confidence interval [CI]: 0.92-1.65, p = 0.16). There were no differences in the need for endotracheal intubation (RR: 0.71, 95%: CI 0.37-1.137, p = 0.31), LOS (mean difference: 1.93 days; 95% CI: -1.46-5.33; p = 0.26), or adverse events (RR: 0.93, 95% CI: 0.56-1.57, p = 0.80) between the two groups. Compared to NPDS, PDS was associated with similar mortality rates, need for endotracheal intubation, LOS, and adverse events. Given the observational nature of the included studies, randomized controlled trials are warranted to validate our findings.


Subject(s)
COVID-19 Drug Treatment , Humans , Length of Stay , Steroids/therapeutic use , Time Factors
4.
Am J Ther ; 29(3): e298-e304, 2022.
Article in English | MEDLINE | ID: covidwho-1778983

ABSTRACT

BACKGROUND: Recent clinical trials have investigated the use of fluvoxamine in preventing clinical deterioration in nonhospitalized patients with acute COVID-19 infection via stimulation of sigma-1 receptors, which regulates cytokine production and functional inhibition of acid sphingomyelinase activity, which may prevent infection of epithelial cells with SARS-CoV-2. However, the role of fluvoxamine is currently unclear because of a paucity of studies, particularly because the drug is being repurposed as an immunomodulatory and antiviral agent. STUDY QUESTION: Aim of our meta-analysis was to investigate the efficacy of fluvoxamine in nonhospitalized patients with acute COVID-19 infection. DATA SOURCE: Comprehensive literature search of PubMed, Embase, Cochrane Library databases, and Web of Science was performed from inception to February 10, 2022, for studies comparing fluvoxamine versus placebo for outpatient management of COVID-19. STUDY DESIGN: The primary outcome of interest was rate of hospitalization. The secondary outcomes were rates of patients requiring mechanical ventilation and mortality. The random-effects model was used to calculate the risk ratios (RR) and confidence intervals (CI). A P value <0.05 was considered statistically significant. Heterogeneity was assessed using the Higgins I2 index. RESULTS: Three studies (2 randomized controlled trials and one prospective cohort trial) involving 1762 patients were included in the meta-analysis. In patients who received fluvoxamine compared with placebo, there was no significant difference in rates of hospitalization (RR 0.26, 95% CI, 0.04-1.73, P = 0.16, I2 = 62%), mechanical ventilation (RR 0.73, 95% CI, 0.45-1.19, P = 0.21, I2 = 0%), and mortality (RR 0.67, 95% CI, 0.37-1.22, P = 0.19, I2 = 0%). CONCLUSION: Current evidence does not indicate a significant effect of fluvoxamine on the rates of hospitalization, mechanical ventilation, and mortality of patients with COVID-19 infection.


Subject(s)
COVID-19 Drug Treatment , Fluvoxamine/therapeutic use , Hospitalization , Humans , Prospective Studies , Randomized Controlled Trials as Topic , Respiration, Artificial , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL